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THE YAMABE PROBLEM ON CR MANIFOLDS

DAVID JERISON & JOHN M. LEE

1. Introduction

The geometry of CR manifolds, the abstract models of real hypersurfaces in
complex manifolds, has recently attracted much attention. This geometry is
richest when the CR manifold is “strictly pseudoconvex,” in which case there
are many parallels with Riemannian geometry. (See the recent survey article by
M. Beals, C. Fefferman, and R. Grossman [2] for a nice overview of these
parallels.)

There are two complementary approaches to the study of CR geometry. The
first is via the Levi form, a hermitian metric on complex tangent vectors; the
second is via the Fefferman metric, a Lorentz metric on a natural circle bundle
over the manifold.

Both of these geometric structures are determined only up to a conformal
multiple by the CR structure. A choice of multiple of the Levi form is called a
pseudohermitian._ structure on the manifold; such a choice also determines the
multiple of the Fefferman metric.

The state of affairs suggests that, in order to find CR-invariant information,
we proceed by analogy with conformal Riemannian geometry, in which a
Riemannian metric is given only up to a conformal factor. A common strategy
in conformal geometry is to choose a particular conformal representative for
the metric which is normalized so as to simplify some aspect of the geometry.
For example, the- Yamabe problem on a conformal Riemannian manifold is to
find a conformal representative for the metric that has constant scalar curva-
ture. It is this problem that we generalize to CR manifolds in this paper.

An obvious analogue of the Yamabe problem for a CR manifold would be
to find a pseudohermitian structure for which the associated Fefferman metric
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has constant scalar curvature. Alternatively, S. Webster [26] has defined a
scalar curvature associated with a pseudohermitian structure, and it is shown
in [16] that these two notions of scalar curvature coincide.

Thus we are led to the following CR Yamabe problem: On a compact, strictly
pseudoconvex CR manifold, find a choice of pseudohermitian structure with
constant (Webster or Fefferman) scalar curvature.

Our main result is Theorem 3.4, which can be summarized as follows: There
is a numerical CR invariant A(N) associated with every compact, orientable,
strictly pseudoconvex 2n + 1 dimensional CR manifold N, which is always
less than or equal to the value corresponding to the sphere S2"*! in C"*1. If
A(N) is strictly less than A(S?"*1), then N admits a pseudohermitian struc-
ture with constant scalar curvature.

This result was announced in [14]. S. S. Chern and R. Hamilton [5], studying
contact structures on 3-manifolds, have independently obtained a result which
is equivalent to our existence assertion in the case A(N) < 0and n = 1.

The proof of the main theorem in many respects parallels that of the
analogous theorem for conformal Riemannian manifolds, due to H. Yamabe
[27], N. Trudinger [24], and T. Aubin [1]. In §2 we describe the Riemannian
theorem and sketch its proof, as a way of charting our course. At the end of
the section, we explain a technical difficulty in the CR case, which makes our
proof longer.

§3 contains the definitions and facts about CR and pseudohermitian struc-
tures we will need, and the proof of the CR invariance of A(N).

In §4, we describe normal coordinates due to G. Folland and E. Stein [9]
which closely approximate the given pseudohermitian structure of N near a
point with that of the Heisenberg group, and use these to prove that A(N) <
}\( S2n+ 1). »

In §5, we summarize some Sobolev-type inequalities and regularity estimates
for CR manifolds due to Folland and Stein, and use these to prove various
regularity theorems for the Yamabe equation (3.2). §6 contains the proof of
existence of solutions under the assumption A(N) < A(S2"*1),

In §7 we describe our progress to date on the question of uniqueness of
solutions to the CR Yamabe problem. In the case of the sphere, this is the
problem of identifying the extremals for the Heisenberg group analogue of the
classical Sobolev lemma.

We would like to thank Karen Uhlenbeck for first introducing us to the
Yamabe problem, and Sigurdur Helgason, who introduced us to the conform-
ally invariant Laplacian on a Lorentz manifold, in connection with his work on
Huygens’ phenomenon [10].
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It will become apparent throughout the rest of this paper that there is a
far-reaching analogy between conformal and CR geometries. The following
table summarizes the most important parallels that will be discussed below.

Conformal Geometry

Riemannian manifold (M, g)
Euclidean space R”

m-sphere §™ in R"*!

Stereographic projection

Riemannian normal coordinates
Scalar curvature K

Laplace-Beltrami operator A

Sobolev spaces Lj,

Sobolev embedding L? © L, 1 =3 -
Conformal change g = ¢772g
Conformal invariant p( M)

Yamabe equation: a,,A¢ + K¢ = uop?™!

L
m

CR Geometry
Pseudohermitian manifold (N, )
Heisenberg group H”

21 + 1-sphere $2"*! in C"*!

Cayley transform

Folland-Stein normal coordinates

Webster scalar curvature R

Sublaplacian A, (Red, on functions)
Folland-Stein spaces S;

Sobolev embedding S < L7, % =1 - 1=
Change of contact form 8 = u?~24

CR invariant A(N)

CR Yamabe equation: b,A,u + Ru = AuP™!

2. The Riemannian Yamabe problem

Let (M, g) be a Riemannian manifold of dimension m > 3. If § = ¢9 " %¢
(with g = 2m/(m — 2)) is a new metric conformal to g, the scalar curvature K
of g is given by

K = ¢'"%a,A¢p + Ko), a,=4m-1)/(m-2),

in which A is the Laplace-Beltrami operator of g and K its scalar curvature
(see, e.g., [1]). Thus the problem of finding a conformal metric with constant
scalar curvature K = p is equivalent to finding a positive, C* solution ¢ to the
Yamabe equation:

(2.1)

This problem has the following nice variational formulation. Consider the
constrained variational problem

a,8¢ + K¢ = pop?™".

(22) p(M)= mf{fM (a,lde|? + K¢?) aV,: fM lo|9dV, = 1}.

One computes readily that the Euler-Lagrange equation for (2.2) is the
Yamabe equation, provided ¢ > 0. Thus one is led to search for extremals for
(2.2).

One of the major milestones in the solution of the Yamabe problem was the
following theorem, due to H. Yamabe [27], N. Trudinger [24], and T. Aubin

1}
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Theorem 2.3. Let (M, g) be a compact Riemannian manifold of dimension
m = 3.

(a) p( M), defined by (2.2), depends only on the conformal class of g.

(b) p(M) < p(S™), in which the sphere S™ has the standard metric.

(©) If (M) < u(8™), then the infimum in (2.2) is attained by a positive, C*
solution to (2.1). Thus the metric § = $9~*g has constant scalar curvature u(M).

Aubin also proved that p(M) < p(S™) in all cases in which M is not locally
conformally flat and m > 6. More recently, R. Schoen {21] has completed the
solution of the Yamabe problem by proving that p(AM) < p(S”) unless M is
the sphere.

The proof of Theorem 2.3(a) consists of the fundamental observation that
problem (2.2) is conformally invariant in the following sense. Under the
conformal change of metric § = 1972, if we let A and K denote the Laplacian
and scalar curvature of g, then we have the transformation law (cf. [1]):

(2.9) (a,A+K)p=1"9a,A+K)p, withed =1"p.
It follows that the integral in (2.2) is unchanged if we replace g by g and ¢ by
$, and thus p( M) is a conformal invariant.

We remark that the transformation law (2.4) can be interpreted as saying
that the operator (a4,,A + K) (the “conformally invariant Laplacian”) acts
naturally as an operator on certain bundles of densities on M, and that the
functional in (2.2) is really a conformally invariant functional on densities. We
will elaborate on this point of view in the context of CR manifolds in §3.

The analysis of (2.2) begins with a thorough understanding of the special
case of the sphere $™ in R”*!. The conformal change of variables given by
stereographic projection coupled with the transformation law (2.4) converts the
variational problem on S™ to the more familiar problem on R”:

(2.5) p(s™) = inf{amme |df|2dx:me |f|9dx = 1}.

This is just the problem of finding the best constant and extremal functions for
Sobolev’s inequality on R™:

2/q
m 2
u(s )(me |f|"dx) <a,,,me \df |2 dx.

Aubin proved that the extremals exist and have the form

(a + b|x — x0|2)_(m‘2)/2

(see also Talenti {23]). On a compact Riemannian manifold M, using Rieman-
nian normal coordinates and the dilation invariance of problem (2.5), one can

transplant an approximate extremal function for (2.5) from R” to a small
neighborhood on M and deduce that p(M) < p(S™).
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The proof of Theorem 2.3(c) uses the Sobolev lemma for compact Rieman-
nian manifolds. Consider the Sobolev space L3( M) with norm

||f||2L}(M) = fM (|df|2 +f2) dVg'

The Sobolev lemma asserts, in part, that for 1/s > 1/2 — 1/m, L}(M) is
continuously embedded in the Lebesgue space L*( M), with compact inclusion
if 1/s>1/2— 1/m. If we choose a minimizing sequence ¢, € L3(M) for
problem (2.2), the Sobolev lemma implies that {¢,} is uniformly bounded in
L3(M), and so a subsequence converges weakly to ¢ € L3(M). The main
difficulty is that the exponent ¢ is exactly the critical value for which the
inclusion L3(M) C L% M) is not compact. Thus we cannot guarantee that the
constraint [, |$|?dV, = 1 is preserved in the limit. On the other hand, if we
consider the perturbed problem

@, B¢ + K¢,y = Mﬂ)fs_)l, 2<s<gq,

the compactness of L3(M) C L°(M) guarantees that a subsequence converges
strongly in the L® norm to ¢, € L3(M), so the constraint is preserved.
Iteration of standard L? estimates for the Laplace-Beltrami operator and the
L? version of the Sobolev lemma shows that ¢, is smooth; the strong
maximum principle implies that ¢, is strictly positive.

The remaining step is to show that, as s tends to g, ¢, tends to a smooth,
positive function ¢. Aubin completed the proof with the help of the observa-
tion that the best constant in the Sobolev inequality is the same for all compact
manifolds in the following sense: if p = p(S™) is defined by (2.5), then for any
M and any & > 0, there exists Cy,, such that

2/q
(2.6) (M—E)(flel"dVg) <ap[ 1AV, + Cuf 1114V,

for all f e L}(M). Inequality (2.6) is proved by transferring the inequality
from Euclidean space to the manifold via Riemannian normal coordinates and
a partition of unity.

Applying (2.6) to ¢, with & chosen so that p — & > p for s sufficiently
close to ¢, one can show that |¢,|3 is bounded away from zero as s — g,
thus completing the proof.

The main technical difficulty in the CR case is that we have been unable to
prove the analogue of (2.6). The problem is that in normal coordinates, the CR
analogue of the gradient on the manifold is not comparable to that on the flat
model.
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An alternative proof of Theorem 2.3(c) has been given by K. Uhlenbeck [25],
which does not require the result that the Sobolev constant is independent of
M. Instead, assuming ¢, does not converge, she used Riemannian normal
coordinates to transplant ¢, to R" in such a way that the transplanted
functions converge in C!(R"). The limit function ¢ then is shown to contradict
Sobolev’s inequality on R” if p(M) < u(S™). It is this method that we shall
adapt to the CR case in §6. The technical difficulty is overcome by obtaining
uniform estimates for a family of nonequivalent “gradients”.

3. CR manifolds .

Let N be an orientable, real, (2n + 1)-dimensional manifold. A CR structure
on N is given by a complex n-dimensional subbundle T, of the complexified
tangent bundle CTN of N, satisfying T}, N T, = {0}, where T, = TI,O' We
will assume throughout that the CR structure is integrable; that is, it satisfies
the formal Frobenius condition [T o, T} 4] € T, 4. We set G = Re(T, + Tj),
so that G is a real 2n-dimensional subbundle of TN. G carries a natural
complex structuremap J: G — G givenby J(V + V)= i(V — V)forV € T 0

Let E C T*M denote the real line bundle G*. Because we assume N is
orientable, and G is oriented by its complex structure, E has a global
nonvanishing section. Associated with each such section 8 is the real symmet-
ric bilinear form L, on G:

Ly(V,W)=2(d8,V A JW), V,Wea,
called the Levi form of 8. L, extends by complex linearity to CG, and induces
a hermitian form on T o, which we write
Lo(V,W)=(-2id0,V A W), V,WeT,.

If @ is replaced by 6 = f8, L, changes conformally by Lz = fL,. We will
assume that N is strictly pseudoconvex, that is, that L, is positive definite for a
suitable choice of 6. In this case, 8 defines a contact structure on M, and we
call 8 a contact form. We denote by E* the R*-bundle of positive multiples of
such a contact form.

The most important example of an integrable CR structure is of course that
induced by an embedding of N in a complex manifold £, in which case
T, =T,,8 N CTN.If p is a defining function for N, then one choice for the
contact form is 8 = i(3 — 3)p.

A pseudohermitian structure on N is a CR structure together with a given
contact form 4. With this choice, N is equipped with a natural volume form
6 A dB" (nonzero because N is strictly pseudoconvex). The inner product L,
determines an isomorphism G = G*, which in turn determines a dual form L}
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on G*, which extends naturally to 7 *N. This defines a norm |w], on real
1-forms w, which satisfies
" 2
jl7 = Lj(0,0) =2 L o(Z)[
J=1
whenever Z,,---, Z, form an orthonormal basis for 7, with respect to the
Levi form (see [16]). (Note that this normalization of |w|, differs from that
given in [14] by a factor of 2. The definition we have chosen here, in terms of
the dual metric L}, is the more natural one.)
The subplacian operator A, is defined on real functions u € C®(N) (cf. [16])
by ‘

| (au)v0 A as" = [ Ly(du,dv)0 A " forall v e CF(N).
N N

Since evidently ||, = 0, L} is degenerate on 7 *N, and so the operator A, is
subelliptic rather than elliptic. It is shown in [16] that A, = ReO,, where O, is
the Kohn-Spencer Laplacian [15] acting on functions.

The Fefferman metric of (N, 8) is a pseudo-Riemannian metric g of Lorentz
signature, defined on the total space of a certain circle bundle C over N. It was
first introduced by C. Fefferman [8] in the case of an embedded hypersurface
in C"*1; various intrinsic characterizations of g on an abstract CR manifold
are known ([4], [7], [16]).

If 0 is replaced by 8 = r?729, with p =2 + 2/n, then g goes over to
& = r?72g, so the conformal class of the Fefferman metric is a CR invariant of
N. (The reason for representing the conformal factor in this strange way is that
it simplifies the transformation laws below.) As a consequence of (2.4), if O
denotes the (Laplace-Beltrami) wave operator of g, and X its scalar curvature,
then we have the transformation law

(ay,:,0+ K)o =r'"?(a,,.,0+K)é¢,
with ¢ = r~l¢. ’

Because the metric g is invariant under the action of S' on C, the operator O
pushes forward under projection 7: C — N to an operator 7,00 on N. It is easy
to verify (see [16]) that 7,0 = 2A,. Moreover, K is constant on the fibers of C
by S'-invariance, so it projects to a function 7, K on N. It is shown in [16] that
7K = (22n + 1)/(n + 1)) R, where R is the Webster scalar curvature of the
pseudohermitian structure 8. It follows that the operator (b,A, + R) on N,
with b, = (n + 1)/2(2n + 1))a, = 2 + 2/n, satisfies the transformation law
(3.1) (A, + R)au=r'"?(b,A, + R)u,

with 2 = rlu.
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If we substitute r = u in (3.1), we obtain the transformation law for the
Webster scalar curvature R:
R=u"7(b,A,+ R)u
when 8 = u”726. Thus if § is a given contact form and u a positive C*®

function on N, a necessary and sufficient condition for the contact form
6 = u”~28 to have constant Webster scalar curvature R = X is that u satisfy

(3.2) b,A,u + Ru=Au?"1.
This is the CR Yamabe equation.

As with the Riemannian Yamabe equation, (3.2) is the Euler-Lagrange
equation for the constrained variational problem

(3.3) A(N) = inf{ Ag(u): By(u) = 1}

in which
Ag(u) = [ (bdul} + Ru?) 6 A d8",  By(u) = [ w78 A do".
N N

(If N is compact, Holder’s inequality shows that A(N) > —c0.)

Our main theorem is:

Theorem 3.4. Let N be a compact, orientable, strictly pseudoconvex,
integrable CR manifold of dimension 2n + 1, 8 any contact form on N, and
define A(N) by (3.3).

(a) A(N) depends only on the CR structure of N, not the choice of 6.

- (b) A(N) < A(S?"*Y), in which S*"*1 C C"*! is the sphere with its standard
CR structure.

(c) If A(N) < X(S?"*1), then the infimum in (3.3) is attained by a positive
C® solution to (3.2). Thus the contact form 0 = u?=20 has constant Webster
scalar curvature R = A(N).

Part (a) follows immediately if we observe that with the change of contact
form § = r?~268 and the substitution # = u, § A d6” = rP8 A d6”, and so
as a consequence of the tran_sforrhation law (3.1), By(&t) = By(u) and Ag(&t) =
Ag(1e). '

Part (b) will be proved in §4, and part (c) in §6 (Theorem 6.5).

To conclude this section, we would like to observe that the transformation |
law (3.1) can be expressed more invariantly in terms of densities. We introduce
density bundles £ on N, with fiber EZ at x € N given by

Ef={p:E} > R:p(A0) =X"u(0)forall A > 0}.
E < will be called the bundle of densities of CR weight &« on' N. Observe that if 8
is a contact form (section of E), then E! is spanned by tg, given by
pe(8)=0/68", 8’ € E*.



THE YAMABE PROBLEM ON CR MANIFOLDS 175

The correspondence 6 — p, gives a natural (CR invariant) isomorphism
E' = E; similarly, 6 A d6" — p3*! is a linear isomorphism between E”"*!
and the bundle 2, of ordinary densities on N.

Once a contact form 6§ is chosen on N, a section of E“ can be represented as
up$, where u transforms by i = r~*u when 8 = rf and 1u$§ = ups.

As an immediate consequence of (3.1), therefore, we obtain the following
proposition.

Proposition 3.5.  The linear operator AS: E"/? — E"/>*1_ gjven by

A (uply®) = (b,Apu + Ru)py**1,

is well defined, independently of the choice of 6.
We call A the CR invariant Laplacian of N. The CR invariance of A(N)
can also be seen from the easily verified fact that

A(N) = inf Ase) ® ¢ :¢ a positive C® section of E"/? with | ¢?=1}.
v N

4. The Heisenberg group and normal coordinates
The Heisenberg group H” is the Lie group whose underlying manifold is
C” X R with coordinates (z, ¢) = (z%,-- -, z", t) and whose group law is given
by
(z,e)(z',t)=(z+2/,t+¢t +2Imz - 3),
where z - 2/ = ¥7_, z/z/". We will also denote elements of H” by x and y and
Lebesgue measure on C" X R by dx or dy. Convolution in H” is given by

f*g(x) =an P )g(y) .

defined, for instance, for f € C{°(H") and g locally integrable.
Define a norm on H” by |x| = |(z, ¢)| = (Jz|* + ¢?)!/* and dilations by
x=1(z,t) > 6x = (6z,8%), 8> 0.
The dilations preserve the group law: 8(xy) = (8x)(8y). With respect to these
dilations the norm is homogeneous of degree 1, i.e. [6x| = 8|x|. The vector
fields Z, = 9/9dz/ + iz/d/0t, j =1,-- -, n, are invariant with respect to group
multiplication on the left and homogeneous of degree —1 with respect to the

dilations. Then T, , = span{Z,,-- -, Z, } gives a left-invariant CR structure on
H". The real 1-form

6,=dt + Y, (iz/dz/ — iz/dz/)

Jj=1
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is left invariant and homogeneous of degree 2. Since 6, annihilates 7, , we may
take it to be the contact form for the CR structure. The Levi form is then given
by

Ly (Z,.Z,) = (-2idby, Z, A Z,) = 28,
Also, for u € CY(H"),

du=52)0+ X ((Zu)ds? +(Zpu) d2)
J=
Therefore,
dul}, = Z 1Z,u)?

if u is real-valued.
If we write

n
=2 Z (2Z,+ Z;z)),
the operator A, associated to the contact form 8, is %,.

The scalar ¢urvature of H” with pseudohermitian structure §, is identically
zero. Hence the extremal problem (3.3) in H” is

(4.1) AGV)=m%LVP%i|%m2

j=1

6, N db] - ulPy A doy =1,
0 0 H"l

with p = b, = 2 + 2/n. Note that
Oy A d8; = n'W(2i)"dt A dzP AdzP A -0 AdZ" A dET
=n12?"dx, x=(z,1).

The Cayley transform is a bih'olomorphism between the unit ball in C"*!
and the Siegel upper half space 2 = {(z,w) € C" X C:Imw > |z|*}, given by

§n+1 ‘ g-k B
wilr L T T o k=l
1+§ 1+¢

where { € C"*!, (| < 1. When restricted to the boundary, this transformation
gives a CR equivalence between $2"*! minus a point and 92. The Heisenberg
group is identified with 82 by (z,1) © (z,t + i|z|*) = (z,w). Denote by F:
S27+1 — H" the mapping given by (4.2) followed by this correspondence
9% = H". Write

(42)

..,n,

n+1
0. =i(d - NRP*=iY (¢at/-¢day),

Jj=1
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the standard contact form for the sphere. Then

4
9, = Fx| — @,
! (|i+w|2 0)

The conformal factor r of (3.1) is given by r = 2"|i + w|™", and for U(s”)
L+ " "ue F(S),

fs (bldvl} + R,0%) 8, A db} = fH b, X |Zul*6, A dbg,
J=1

[S 0?8, A dO] = an u? 8y A 67,

where u is a nonnegative function on H” and R, = n(n + 1)/2 is the scalar
curvature associated to #,. Thus the extremal problems (4.1) for H” and (3.3)
for S2"*1 are the same. In particular, A(H") = A(S2"*1),

Folland and Stein constructed normal coordinates which show how closely
the Heisenberg group approximates a general strictly pseudoconvex pseudo-
hermitian structure. If (W,,---,W,) is a frame for T, over some open set
V © N which is orthonormal with respect to the given pseudohermitian
structure on N, we will call (W, - -, W,) a pseudohermitian frame. The unique
real vector field T defined by §(T)=1, and d6(7, X)=0 for all X, is
transverse to G, and (W,,---, W, Wl,- e Wn, T) forms a local frame for CTN.

Theorem 4.3 ([9], 14.1, 14.9, 14.10, 16.1). Let N be a strictly pseudoconvex
pseudohermitian manifold of dimension 2n + 1 with contact form 0, and let
V C N be an open set on which there is given a pseudohermitian frame
(W, --,W,). There is a neighborhood of the dlagonal QCcVXVandaC*®
mapping © :Q — H" satisfying:

() O(&m) = -O(n,§) = O(n, §)"\. (In particular, ©(§, £) = 0.)

(b) Denote ©.(n) = O(§,n). O, is thus a diffeomorphism of a neighborhood
Q. of £ onto a neighborhood of the origin in H". Denote by y = (z,t) = ©(£,7)
the coordinates of H". Denote by O, k = 1,2,--+,a C*® function f of & and y
such that for each compact set K C C V there is a constant Cy, with | f(&, y)| <
Cx|y|* (Heisenberg norm) for & € K. Then, writing O = (O;1)%,

O = 0, + O'dt + ), (0%dz' + 0%dz/),
Jj=1
O.(0 A db™) = (1 + 0")8, A db].

(c)

O, =27+ 0'¢(d,) + 0°6(3,), 0T = 3/3, + 0'6(9,,9,),
0,54, = O,(ReO,)
=%y + &€(3,) + 0'¢(3,,02) + 0°6(33,) + 0°6(3?),
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in which O*& indicates an operator involving linear combinations of the indicated
derivatives with coefficients in O, and we have used 9, to denote any of the
derivatives 0,/0z7/, 3/3z/. (The uniformity with respect to ¢ of bounds on
functions in O* is not stated explicitly in [9], but follows immediately from the
fact that the coefficients are C®.)

In what follows, we will use the term frame constants to mean bounds on
finitely many derivatives of the coefficients in the O*& terms in Theorem 4.3.

The function ® is an approximate group multiplication in the following
sense. In the case N = H”, 8 = §,, we can take ©(£, 1) = £ !9 and the terms
with coefficients in O all vanish. In the general case, these extra terms have a
higher homogeneity with respect to the dilations (z, 1) — (8z,8%¢). Hence they
can be viewed as error terms. More precisely, we can rephrase (b) and (¢) as:

Remark 4.4. Let T%z,1) = (87'2,87%t), K C C V, and let r be fixed. With
the notation of Theorem 4.3 and B, = {y € H":|y| < r}, T?=0,(Q,) > B,
for sufficiently small § and all ¢ € K. Moreover, for §¢ € K and y € B,,

(T200,).8 = 62(1 + 80')6,,

(7220, ),(6 A df™) = 8>"*2(1 + 50") 6, A db;,

(T%08,)7, = 6712, + 80'6(3,) + 820%(3,)),

(7200, )48, = 872(% + £(3,) + 80'¢(3,,0?)
+820%(33,) + 6°0%¢(32)).

(Here O* may depend also on 8, but its derivatives are bounded by multiplies
of the frame constants, uniformly as 6 — 0. Recall that T;ij = 8‘1le., and
T28, = §%,.)

The simplest illustration of rescaling is the proof of Theorem 3.4(b), which
we will now carry out.

Lemma 4.5. The class of test functions defining N(H") can be restricted
further to C* functions with compact support.

Proof. Let ¥ € CF(H") satisfy ¥ = 0, [i1n¥(y)dy = 1. Denote ¥;(x) =
§-Cn*D¥(§-1x). Consider a test function u satisfying [y |u|? 6, A dOf =1
and Zu € L*(H"), j=1,---, n. The left-invariance of Z; implies Z,(¥;yu)
= Vsu(Zu). It is easy to show that ¥y,u € C*(H"), ¥yuu — u in L2(H"),
and ¥;,Zu = Zu in L?(H") as § — 0. Hence we can restrict the class of test
functions to u € C*(H").

To see that u can be taken to have compact support, consider ¢ € C°(H")
such that ¢(x) = 1 for |x| < 1, ¢(x) = O for |x| > 2, and 0 < ¢(x) < 1 for all
x. Denote ¢°(x) = ¢(8x). Notice that Z;¢° is supported in the “annulus”
87! <|x| < 267", and that there is a constant C such that |Z¢°| < C8.
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Therefore,

an |Zj(¢8u)|230 L =an (Z,6%)u + $°Z,uf* 8, A dO;
< fH,, (1 + S™Z2 12 ul® + (1 + S)I6°PIZ,ul?) 6, A dbg

< CY1+ S-l)f 82x%(ul28, A BT +(1 + S)f |Z,u|> b A 48]
- -
for any S > 0, with

xa(x)= {1 8"1<|x|<28‘1,
0 elsewhere.
Note that [ x%(x)dx = C8@""2, Hence by Holder’s inequality and the
relation 2n + 2)(1 — 2/p) = 2,

2/p 1-2/p
f 82x°u?dx < (f |u|1’x8dx) 82(f x*(x) dx)
H" HI? H"

2/p
= C,,l_z/"(f |u|1’x‘5dx) .
HH
This last integral tends to zero as 8 — 0 since u € L?(H"). Choosing S and
then & sufficiently small we see that

|

Y 1Z;(6%u) 120, A by < [ X \Zu? 6, A db].
50 YH" ;1 H" j=1

Also, clearly,

lim fH 16°u|” 6, A dO7 = fH" u|? 8, A 4.
Hence we can also restrict the class of test functions to functions of compact
support.

We are now ready to prove that A(N) < A(H"). Choose u € CP(H") such
that By (u) =1, 4, (u) < A(H") + & Denote u(x) = 8 "u(8 'x). Choose
any point £ € N and a Folland-Stein coordinate chart O, as in Theorem 4.3.
Define v5,(n) = u5,(0(n)). For & sufficiently small, the support of u g, is
contained in ®,(£,). Thus v 4, has compact support in {2; and can be extended
by zero outside £, to a function in C*(N). Note that By (u ) = By(u)=1
and Ag (u5)) = Ag(u) < A(H") + &. Also

f |t 5,200 A d6 = szf [u]26, A B —> 0 asd — 0.
H" H"
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It now follows from Remark 4.4 that lim_,  By(vs)) = 1 and lim , o 44( )
=A 00( u#) < A(H") + ¢. Since ¢ was an arbitrary positive number, we can
conclude A(N) < A(S?"*1), which is Theorem 3.4(b).

5. Folland-Stein spaces and estimates for A,

In this section we will define the function spaces that are best suited to
regularity properties of the operator A,. These spaces were introduced by
Folland and Stein [9], [22] and Propositions 5.1, 5.5, 5.7, and 5.9 are due to
them.

We begin by proving the analogue of the classical Sobolev lemma.

Proposition 5.1. Ler X, = Rer and Xin = ImZ, j=1,--,n There
exists a constant C, such that withp = 2 + 2/n,

2/p 2n
(f 1617 8, A ng’) <G Y 1X9P0 A dbg
H’l H” j=1

for every ¢ € C§F(H").
Proof. The key tool is the fundamental solution
F(z,t)=a 2,0, a,=2""2""/T(n/2)’,
to the operator %, = - 3¥7_(Z,Z, + Z,Z)) = -£32, X/. For ¢ € C°*(H"),
(Zop)* F=¢ [9, Proposition 7.1} Note that by left invariance of X,
(X;h)* F = h* X F for h € Cg°(H"). Hence,
2n
(5.2) ¢=(Lp)xF= -3 (X0)x(X;F).
i=1
X;F is homogeneous of degree -2n — 1. In particular, |X;F(z, )| <
Cl(z, 7>,

Lemma 53 [9, Proposition 87]. If 0 <a<2n+2 and |H(z,t)|<
Cl(z, t)}"2"2%%, then the mapping g — g* H extends to a bounded mapping
L'(H") —» L*(H"), where s ' =r* —a/Q2n+ 2 and 1 <r <s < .

The lemma (applied with @ = 1, r = 2, s = p) yields the proposition.

If we consider the inequality of Proposition 5.1 for real-valued functions ¢,
in light of Lemma 4.5, finding the smallest possible constant C, in Proposition
5.1 is equivalent to finding A(H"). In particular, Proposition 5.1 is equivalent
to

Proposition 5.4. A(H") > 0.

Now let U/ be a relatively compact open subset of a normal coordinate
neighborhood €, © N as in Theorem 4.2, with contact form # and pseudo-
hermitian frame (Wy,---,W,). Let X; = ReW, and X,,,=ImW, for j =

1,---,n. Denote X*=X, -----X,, where a = (e, -, ), each a; an
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integer 1 < a; < 2n, and denote /(a) = k. Define the norms
”f”Sf(U) = sup | Xfllrwys
o)<k

where

1/p
nﬂuw=(ﬁmveAwﬂ :

The Folland-Stein space S{(U) is defined as the completion of C§°(U) with
respect to the norm || - || p(y-

Folland and Stein also defined Holder spaces suited to A,. The function
p(&,m) = |©(&,m)| (Heisenberg norm) is the natural distance function on U.
For 0 < B < 1 define

T, (U) = { f& C™T):1f(x) - f(n)l < Cp(x, )"}
with norm
£,y = sup |f(x)] + sup M&tﬁ%ﬂ,
xeU xyeU  p(x,p)
For any integer k > 1and k < B < k + 1 define
L(U)={fe CcoU):x*feT,_(U)forl(a) < k)
with norm ’

Hf”l",,(U) = su%|f(x)| + sup |X"f(x) - Xaf(y)l .

syev p(x, p)7F
HECIESLS

(The definition of T} for integer values of 8 involves second differences (cf.
[9], [19]). We will not need to use the integer case.) Notice that the norms
above depend on the choice of pseudohermitian frame.

Now for a compact strictly pseudoconvex pseudohermitian manifold N,
choose a finite open covering Uy, - -, U, for which each U; has the properties
of U above. Choose a C* partition of unity ¢; subordinate to this covering,
and define

SE(N) = {fe L}{N):¢;f € Sf(U;) forall j},

T,(N) = {fe CON):¢,f € Ty(U)) for all j}.
Proposition 5.5. With the notations above, S[{(N)C L’(N) for 1/s =
1/r—k/2n+2)and1 <r<s< c0. ’
Proof. According to a fundamental theorem of Folland and Stein [9,

Theorem 15.5] extending (5.2), there exist operators 4,, j =0,---,2n, given
by '

Ajf(x)=fNKj(x,)’)f()’)dV()’)
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with

|K;(x, y)| < {Cp(x,y)'z"_l, (x,y) €,
/ C elsewhereon N X N,

such that f = X327, 4,X,;f + A,f for every f € S{(N). Since f and X,f belong
to L’(N), we conclude from the analogue of Lemma 5.3 on N that f € L°(N).
The case k& > 1 follows easily by induction.

Proposition 5.6. If N is as above, 1 <r<s<o0, and 1/s>1/r
—1/(2n + 2), then the unit ball in the space S{(N) is compact in L’(N).

The proof of this proposition requires the theory of pseudodifferential
operators associated to the subelliptic structure of A, as developed by Nagel
and Stein [19] and a calculus [11] that permits one to define Folland-Stein
spaces S for fractional values of k. These ingredients would take us too far
afield so the proof will appear elsewhere [13].

Let U be a relatively compact open set in a normal coordinate neighborhood
as above. We will fix local coordinates to be those given by (z,t) = O, for a
fixed point ¢ € U. The standard Holder space Ap(U) is defined for 0 < g < 1

by
Ag(U) = {fe C®(U):1f(x) - f(y) < Cllx = yI*}

with norm

f —_
1 llapcwy = sup 17(x)1 + xf?é’u%f?)—_ﬁg—)l'

Fork < 8 <k + 1, k an integer > 1,
AgU) = {fe C%T):(8/3x)°f € Ay _((U) for l(a) < k |

with the obvious norm. Then the following fundamental estimates are due to
Folland and Stein.

Proposition 5.7. For each positive noninteger 8, each r, 1 <r < oo, and
each integer k > 1, there exists a constant C such that for every f € C(U),

(a) ”f”I‘B(U) < C“f”s,;(U)a where1/r = (k — B)/(2n + 2),

(b) ”f,,Aﬁ/2(U) < C”f”l"B(U)’

© 1 llsz0n < CUR AN Ly H N g s

(D N f e, ,0n < CUALfNInywy + 1 o)
The constant C depends only on the frame constants.

Folland and Stein proved Proposition 5.7 with O, in place of A, (see [9,
Theorems 21.1, 20.1, 16.6, and 15.20]). Their arguments apply verbatim to A,,
since it is modelled on the operator %, which has a fundamental solution.
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Applying a partition of unity, we conclude:

Proposition 5.8. The estimates in Proposition 5.7 hold with U replacéd by a
compact strictly pseudoconvex CR manifold N.

The following regularity result follows from these estimates just as in [9,
Theorem 16.7].

Proposition 5.9. Ifu,v € L (U), and A,u = v in the distribution sense on
U, then for any n € C*(U) the following hold.

() If ve L'(U), n+1<r< oo, then nu& LR(U) where B =2
—2n +2)/r.

®Ifve S[(U,l1<r<cew, k=0,1,2,---, thenqu € S, ,(U).

(©) If v € Ty(U), B a noninteger > 0, then nu € Iy ,(U).

We will also need the following regularity result involving critical exponents,
which will get an iterative regularity proof started.

Proposition 5.10. Let U be as in Proposition 5.7. Suppose that f € L""Y(U),
ue LP(U) (wherep=2+2/n), u20, and (A, + f)u = 0 in the distribu-
tion sense on U. Then, for any n € CF(U), nu € L(U) for every s < oo.

This proposition is a variant of results of Yamabe [27], Trudinger [24], and
Brezis and Kato [3]. A proof is given in the Appendix.

Proposition 5.11.  With the hypotheses of Proposition 5.10 and the additional
assumption f € L*(U) for some s > n + 1, we have that u is Holder continuous
in U, and for some 8 > 0 andany K C C U,

l#llr, k) < c

for a constant C depending only on K, ||fllswy> lulleyy, and the frame
constants.

Proof. Consider a nested sequence of cutoff functions 5; € C5°(U) such
that 7, =1 on K and the support of 7,,, is contained in the set on which
n; = 1. By Holder’s inequality fu € LY(U) for 1/q = 1/p + 1/s. Proposition
5.9(b) implies that n,u € S§(U), and thus by Proposition 5.5, n,u € L7 (U)
for 1/p;=1/9—-2/2n+2y=1/p—-(1/(n+1)—1/s). Repeating this
argument we can conclude that n,u € L#«(U) for1/p, =1/p — k(1 /(n + 1)
—1/s), and every k for which 1/p, > 0. Suppose k is the largest possible.
Then p, > n + 1, and so Proposition 5.9(a) gives Holder regularity 7, ,,u €
Lp(U) for B =2 — (2n + 2)/p,- The bound on Ntllr, follows from Proposi-
tion 5.7.

Proposition 5.12. With the hypotheses and notation of Proposition 5.11 and
the additional hypothesis f € L=(U ), we have that

max u(x) < C min u(x)
xeK xeK
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for a constant C depending on the same bounds as in 5.11 and in addition
(VAP .

The additional hypothesis f& L*(U) is not necessary (for the classical
version see Trudinger [24]). However, we only need the case f € L*(U), and in
this case the proof is practically a verbatim transcription of Moser’s proof [18]
of the Harnack inequality for uniformly elliptic operators. Instead of consider-
ing balls in the ordinary Fuclidean sense one has to use balls with respect to
the distance function p. The appropriate notion of functions of bounded mean
oscillation (BMO) relative to this distance and the analogous John-Nirenberg
inequality are discussed in [6]. There is only one ingredient of Moser’s proof
that requires a more detailed discussion, namely the following Poincaré-type
inequality.

Proposition 5.13. Let U be as above. There is a constant C depending only on
the frame constants such that if B, C U is a ball of radius r with respect to the
distance p, then for every f such that |df |4 € LY(B,),1 < g < o0,

f |f—fp70 A dO" < erf |df |36 A 46",
B, ’ B,

inwhichf, = ([, f0 A d8™")/([,8 ~ dO7™) denotes the average value of f.

This inequality was first proved by A. Greenleaf and D. Jerison (unpub-
lished). A different proof will appear in a forthcoming paper [12].

We note in passing that this implies the following interpolation inequality
for the spaces S7.

Proposition 5.14. If u € LNU) and |du|, € LYU) with 1 < g < 0, then
ue SHU) and

Nullsecwy < c( ldulgl| o1y + ”u”Ll(U))a

where C depends only on the frame constants.

Proof. From the definition of S, it suffices to estimate ||u]| 1+, We note
that

fell ey < C(||u —uyllpeuy + ”uU“L”(U))’

Nl Loy = Cllugll ey < Clllu = ugll pay + 1l 2wy )

< C(||u — Uyl oy + “u”Ll(U))'

Proposition 5.13 completes the proof.

Finally, we are ready to prove regularity results for the Yamabe equation.

Theorem 5.15. Let U be a relatively compact open set in a normal coordinate
neighborhood as above. Suppose that f,g € C*(U), u= 0 on U, u € L'(U)
for somer > p, and Ayu + gu = fu?"1 in the distribution sense on U for some q,
2<qg<p Thenuec C*(U), u>0, and if K < C U, ||ul|cxx) depends only
on K, ||ull prcvys Wl cxxy» 18l (xy» and the frame constants, but not on q.
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Proof. Let h=fui"?~ge L/ D). By Holder’s inequality, # €
L*(U), where s=r/(p—2)>n+1, and ||, depends only on the
stated bounds. Then choosing K, with K c C K, c c U, it follows from
Proposition 5.11 that u € Th(K;) for some B > 0, and from Proposition 5.12
that » is bounded away from zero by a constant depending on the same
bounds. The spaces 1}, are algebras, and since u is bounded away from zero,
u® € Ty(K,) for any real a. Thus, replacing K; with a smaller set that we still
denote K, h € I3(K;) and we conclude from Proposition 5.7(d) that u €
T, 5(K;). Repeating this argument by induction we see that u € C*(K) for
any k (see Proposition 5.7(b)).

Corollary 5.16. Let U, f, g, and u be as above, but assume only that r = p
instead of r > p. Then we still have u > 0 on U andu € C*(U).

Proof. Again write h = g — fu?"2 With K, as above, we conclude succes-
sively that # € L"*}(K,); u € L*(K,) for all s < co (Proposition 5.10); and u
is positive and C* (Theorem 5.15).

Finally, we prove the following removable singularities result, which we will
use in §7.

Proposition 5.17. Suppose U is as above, § € U, u € L'(U) forr > p/2,
uz0, fe L"*YU), and (A, + f)u = 0 in the distribution sense on U — {£}.
Then (A, + f)u = 0 in the distribution sense on U.

Proof. The hypothesis means that for all ¢ € C°(U — {£}),

(5.18) f (ul o + fud) 6 A d6™ = 0.
U

We need to show this holds for all ¢ € C§°(U).

Let ©, be Folland-Stein normal coordinates centered at £, with respect to
the pseudohermitian frame (W), - -, W,). We may assume that O,(U) = B =
{(z,£):[(z,1)| < R}. Choose ¢ € Ci°(Bg) with0 < ¢ < land ¢ = 1in By,
and set Yy(z,1) = ¢(8712,87%). Then (1 — ¥;5)¢ € CP(Bg — {0)) for ¢ €
C§°(Bg) and 0 < 8 < 1, and so from (5.18)

fB (ub,$ + fugp)f A dO” =fB (ud,(s) + fupbs) 6 A db”.

We will show the right-hand sides goes to zero as § — 0.
By Holder’s inequality, with 7! + 57 =1,

fB (fugpws)8 A d8” < Cllfll apll®ull oy
5

and since s < n + 1, this expression goes to zero as § — 0.
From the definition of A, we have

A (9¥s) = 9A, 05 — 2L5(do, ds) + P59
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The term [ uyzA ¢ goes to zero by the same argument as before. Referring to
Remark 4.4, and considering the homogeneity of each term in W, or A, we see
that in By,

Wabsl < C871, |As] < €872,

where C depends only on ¢ and the choice of normal coordinates. Then,
noting that

L3(dg,dys) = L (WoWibs + Wibs9)
j=1

and integrating over By,

J,

(]

(ugpA g5 — 2uly(do, dy;)) 8 A dO”

. ) 1/s
< C6-2”””L1(B5) < C8’2||u||Lr(Ba)(./; g A dﬂn)
. (]
by Holder’s inequality. But observe that
6 Ado"=(1+0(8))(6,Addg) and [ 6, dog=C8>*2.

Thus the last expression above goes to zero provided (2n + 2)/s > 2, that is,
provided r > n + 1/n = p/2.

6. Existence of extremals
In this section we will prove Theorem 3.4(c). As we indicated in §2, we will
do so by first considering a perturbed variational problem.
Fix a compact strictly pseudoconvex CR manifold N with contact form 6,
and consider for each ¢, 2 <'¢. < p, the extremal problem

(6.1) A, =inf{4,(¢):¢ € SH(N), B, [(¢) =1},

in which 4, is as in (3.3) and
By () = [ 110 A do"

Theorem 6.2. For 2 < g < p, there exists a positive C* solution u, to the
equation
(6.3) b,Ayu, + Ruq = XquZ“Il
satisfying Ag(u,) = A, and By (u,) = 1.
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Proof. Consider a minimizing sequence ¢, for (6.1), that is, a sequence such
that 4,(¢,) > A, and By (¢,) = 1. After replacing ¢, by |¢,|, we can suppose
that ¢, > 0. Since {44(¢,)} and { By ,(¢,)} are bounded, {¢;} is bounded in
S, and so there is a subsequence converging weakly in S? to ¢ € SZ(N). By
the compactness result, Proposition 5.6, the subsequence converges in L7
norm, so B, (¢) = 1. By Holder’s inequality, [ R¢p? — [ R¢?, and so0 4,4(¢) <
A, But since A, is an infimum we necessarily have 44(¢) = A 4 Moreover,
¢ > 0, and by a standard variational argument ¢ satisfies (6.3) in the distribu-
tion sense. Finally ¢ € L#(U) by Proposition 5.5, and so ¢ is strictly positive
and C* by Corollary 5.16.

Next we examine what happens to u, as g — p. First we consider the
behavior of A .

Lemma 6.4. Suppose 8 is chosen so that [, 8 A dO™ = 1. Then

@) If A, <0 for some q, then A, <0 for all ¢ > 2 and A, is a nonde-
creasing function of q.

(b) If A, = O for some (hence all) q > 2, then A, is a nonincreasing function
of q, and is continuous from the left.

Proof. Suppose A, <0 for some g, and let ¢" > 2 be arbitrary. Given
¢ > 0 sufficiently small, choose a C* function ¢ with By ,(¢)=1 and
Ag($) <A, + &< 0. With ¢ = a¢ for « € R, we have B, (¢) = a?B, (o)
and A,(¢) = a’4,(¢). We set a = (Ba)ql((i)))_l/?l so that By (¢) =1 and
Ag(¢) < 0. Thus A, < 0. If ¢’ < g, then @ > 1 by Holder’s inequality and
our normalization of §. Consequently 44(¢") < A, + ¢, which proves that A, is
nondecreasing.

On the other hand, if A, > 0 the same argument shows A, < A, if ¢
Since we can force a to be close to 1 by choosing ¢’ close to q, we also see that
A, is continuous on the left.

From now on, replacing 8 by a constant multiple of 1tself we will assume
that # has been normalized so that [, 8 A d6" = 1.

Theorem 6.5. - If A(N) < A(S?"*1), then there exists a sequence q, ; tending
to p from below such that u, converges in C K(N) for any k to a function
u € C®(N) such that u > 0, b LA u + Ru = N(N)u?™ L, A,(u) = \(N), and
B, ()= 1. ,

Proof. Casel. A\(N) < 0.For2 < g < p andany ¢ € S}(N), we have

f (L*(duq,dqb +Ruq¢ f}\ ul™l¢.

Let ¢ = u?~ ' Then since A, < 0 by Lemma 6.4,

-1 _ 2
fN q T 2|duq|9<fN|RuZ|.
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Denote w, = u/>. Then

/Nldwqqzschw;=c/NuZ=

Also, by Proposition 5.5, fyw} < CfN(ldwq|§ + qu). Hence [yw? < C. Now
let g, > 2 and set 7 = (go/2)p > p. Then for g > g, we have that ||u || /-, is
uniformly bounded as g — p. It follows from Theorem 5.15 that {u,} is
uniformly bounded in C¥(N), and so a subsequence u o, converges in C k for
every k. Hence, the limit u satisfies b,A, u + Ru = Au?"1, A,(u) = A, B, en)
=1, ©>0, and u € C*(N), where A =1lim,_, A, . By Lemma 6.4, A<
A(N), and so by definition of A(N) we have A = }\(N)

Case 2. A(N) = 0. In this case LLemma 6.4 shows that limq_,p}\q = }\p =
A(N).

Case 2a: For some sequence g; — p, supy|du a,l6 is uniformly bounded. By
Proposition 5.14, {u qj} is uniformly bounded in S¢(N) for any ¢, and hence
in L"(N) for every r. The theorem is concluded in the same way as in Case 1.

Case 2b: supy|du,ls — oo as g — p. We will show that this case never
arises.

Choose a point §, € N such that supy|du,|s = |du,(£,)]s Let ®£ be
normal coordinates as in Theorem 4.3. We can assume there is a fixed
neighborhood U of the origin in H” contained in the image of ®£ for all ¢,
and for each ¢ we will use 95 to identify U with a neighborhood of §,, with
coordinates (z, 1) = 95

Now consider the change of coordinates (2,7) = T%(z,t) = (82,8 %) on
H”, as in Remark 4.4, and set

By =di + Y. (iz/dz/ — i3/dz7) = 672T34,.
j=1
(Here, as in §4, we write T3 = ((T°)"1)*.) On the set § U with coordinates
(%,7) define h (%,7) = 8% Dy (82,6%) with § =8, > 0 chosen so that
|dh ,(0)|5, = 1. Observe that = 6, at 0, and |w|5-25 = 8?|w|j for any 1-form
w, and so

\dh 4 (0) 13, = 1T*dh ,(0)|5-2q, = 84~ D|du (£, o-
In particular, 8 — 0 as ¢ — p, and hence 8'U tends to the full space H” as
q—p.
Now define the contact form 6, = 8~ 275 8 in coordinates (Z,7) on the
region 871U, and set &, = AY” = 8?A7+". The equation for 4, can then be

written
b$h + R A8 =X\ he 1

9949
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in which R, is the scalar curvature of # expressed in coordinates (Z, P).
Observe that [R | < [[R]| 1y

By compactness of N, passing to a subsequence if necessary, we may assume
that £, converges to £ € N, and if we denote by (W{,---, W) the pseudo-
herm1t1an frame used to define @5 we may assume that (W{,---, W7) con-
verges in C* for all k to a frame (Wl, -, W,). Now set Z7 = 8T8 W7, so that
(Z{,---, Z]) is a pseudohermitian frame for §,. By examining the error terms
in the expression for W7 in Remark 4.4, it is easy to show that, for any R > 0,
Z7 converges in C k(Bg) to Z; for every k. Similarly, 6, and &, converge
uniformly in C¥(Byg) to 8, and .%,, respectively.

Now fix a radius R > 0. Suppose ¢ is sufficiently close to p that B3 rC 8 u.
Let n € C§°(B,z) beequalto1 on B,. Then

(6.6) Z,(nh,) =nZLh,~2L5(dn, dn,) +(ZLm)h,

q

= (-R 8%, + A het) — 2L5(dn, dn,) +(Z)h,,

q°q"q

First, {dh |y, is bounded by 1 in B, because it attains its maximum value of 1
at the origin. Note that

(6.7) f (3, 7)|9dzdi = 829/ (7 D-Cn+) lu,(z,1)|9dz dr.
Kz.DI<R Nz 01<8R
For g < p, we have 2q/(q — 2) > (2n + 2), and so the coefficient of the
right-hand integral is bounded by 1 as ¢ — p. Moreover, the volume element
dz dt -is equal to C,(1 +80')8 A d8" on B,s; by Remark 4.4. Therefore,
h, & LY(B,g, dzdf) with uniform bounds on the norm. In particular, %, €
L'(B,p, dZdf) uniformly as g — p. Combined with the uniform bound on
|dh q|aq, this gives 4, € S7(B,z,0,) for every r < oo with uniform bounds on
the norm, by Proposition 5.14. Thus by Proposition 5.5, nA? is uniformly
bounded in L'( B, ) for every r, and by Theorem 5.15, uniformly bounded in
C*(By) for every k.

Now we can take a subsequence g; = p for which %, converges, say, in
CY(Bg). Define a function u on all of H” by first choosmg a subsequence £,
converging in C!(B,;), and then a subsequence converging in C'(B,), etc
Notice that u > 0, u € C'(H"), and u # 0 because |du(0)|,, = 1. For ¢ €

C{°(H™) we have, since qu converges to 8,

(6.8) f (b, L3 (du, do) — A(N)u?"¢) 8, A db = 0.
H"

Denote ||ul|7 = [y»u? 0, A db§. We claim first that
(6.9) o, < 1
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Since 6, A df; approaches §, A df; uniformly on compact sets, the con-
straint [y u?f A d6" =1 and equation (6.7) imply that [p u?f, A dfg < 1.
Because R is arbitrary, (6.9) is proved.

Next we verify

(6.10) [ 1dul3 8, A dbg < € < oo.
H"
In fact,

2 n_ 1 2 n
fBR |dul3, 0, A d6} = lim fB (dh 13, 6, A 46,

Joo

= lim [ 824/ Ddu, 36779 A(87%d0)"

S0 "By

< jlixi fN \du, |36 A d6”,
which is bounded. (Here § = 8qj, and we use once again 2qg/(g — 2) > 2n + 2.)
We can now conclude the proof. Because of the estimates (6.9) and (6.10) we
can take a sequence ¢, € C;°(R") approximating u in the norms associated to
(6.9) and (6.10). Hence we conclude from (6.8) that

b [, \duld, b A d83 = M(N)Ilul.

The function & = u/||u||, satisfies the constraint ||#||, = 1, but using (6.9) and
the fact that p > 2 we find that

b [ 15,6 A 46§ = M(N)lliZ/lull} < AM(N) < A(H").

This contradicts the definition of A(H"). Thus Case 2(b) is impossible, and the
proof is concluded.

7. Uniqueness

It would be interesting to know under what circumstances a contact form
with constant scalar curvature is unique. As is the case with the Riemannian
Yamabe problem, the answer depends on the sign of A(N).

Theorem 7.1. If A(N) < 0, then any two choices of 8 with constant scalar
curvature are constant multiples of each other.

Proof. We note first that the sign of any constant scalar curvature is a CR
invariant of N. Suppose 8 and = 4”26 both have constant scalar curvature
R and R, respectively. Then

b,Ayu + Ru= Ru?1.
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Integrating this over N and noting that [, A, u = [y L¥(d1, du) = 0, we con-
clude that either R =R = Oor R/R = [u?"!/fu > 0.

Now suppose A(N) < 0. By Theorem 6.5, there exists 6 with scalar curva-
ture R = A\(N). Suppose 6 = u?~29 has constant scalar curvature R. The
preceding observation shows that R < 0, so after multiplying « by a constant
we may assume R = R. Then u satisfies

b,Ayu + Ru= Ru?™ L.
It suffices to show u = 1.

Since A, is degenerate elliptic, it satisfies a weak maximum principle. At a
point x € N where u is maximum, A,u(x) > 0, and so u”~(x) — u(x) < 0,
which implies u < 1. Similarly, at a point y where u is minimum, we conclude
u(y)y= 1. Thusu = 1.

Now suppose A(N) = 0. By Theorem 6.5, there exists § with scalar curva-
ture R = 0, and by the remarks at the beginning of the proof any other choice
§ = u? =2 with constant scalar curvature has R = 0. Thus u satisfies b,A ,u =
0, which implies [y |du|3 = 0. Therefore, du is a multiple of 6, say du = f8 for
some f € C®(N). Differentiating this, we see that 0 = df A 6 + fd6. Restrict-
ing to G, fdf = 0 which implies f = 0. Thus u is constant.

On the other hand, if A(N) > 0, the solution to the Yamabe problem may
not be unique. In particular, on the sphere $?"*1, there are many obvious
solutions: if we start with the standard contact form 8, (cf. §4), and subject
§2"*1 to a CR automorphism ®:S2"*! - §2"*1 then ®*6, will also have
constant scalar curvature. In general, ®*6, # 0,.

It is important to know whether these solutions are extremal for problem
(3.3) on §2"* !, We note first that the extremals exist.

Theorem 7.2. There exists a positive C*® contact form 0 = u?~20; on S*"+1
for which the infimum X\(S*"*1) in (3.3) is attained.

Proof. For 2 < g <p, let u, be the solution to b,A,u, + Ru, = A ui™"
given by Theorem 6.2. If |du q|§ is uniformly bounded as g — p, then u,
converges to a solution uy of b,A,u, + Ruy = A(S?"*)ug~! as in the proof
of Theorem 6.5, Case 2(a). On the other hand, if |du q|§ is unbounded, then as
in Theorem 6.5, Case 2(b), we can construct a function # on H” satisfying

ll#ll, =1 and ban" U2 B, A dB = A < A7),

But since A(S2"*1) = A\(H") as defined by (4.1), we must have A = A(S?"+1),
Now, setting 6 = F*(i1?726,) on S?"*! (with F:S?"*1 > H" as in §4), we
have a contact form that can be written 6 = u#~26,, with u € L?(§*"*1)
satisfying

(7.3) bAyu + Ru= A(S¥+)ur~1
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on $2"*! minus a point. By Proposition 5.17, this equation holds on all of
$27+1 Finally, by Corollary 5.16, u is positive and C*. (This theorem can also
be proved using the method of P.-L. Lions [17].)

With this theorem, it is natural to conjecture the following in view of the
analogous result of Obata [20] in the Riemannian case.

Conjecture 7.4. The contact forms 0 = ®*6,, for ® € Auy(S?"*1), are the
only ones on the sphere which have constant scalar curvature. Thus

A(S?H1) = %n(n + 1)([5

To understand this conjecture, we may use the mapping F:S2"*! — H"
given by the Cayley transform as in §4 to transfer the problem to the
Heisenberg group. If # is any contact form on S$2"*! with constant scalar
curvature R, then § = F,0 is a contact form on H” with constant scalar
curvature R. For some positive C* function u we can write § = u? 26, Since

2n+1

2/p
0, A dﬂ{') .

[ urbynabg={ Gadin={ 6ndi" <o,
n H" Sll+1

we have u € L”(H"). As in the proof of Theorem 7.1, we may multiply » by a
constant to achieve R = n(n + 1)/2. Then, on H", u satisfies

(7.5) 4A,u = n*ur"1.
A routine computation shows that for § = ®*§; with ® a CR automorphism
of §27+1 4 has the form

(7.6) u(z,t) = C|t+i[z|2+z~ﬁ+)\|—n
withC > 0, A € C,Im\ > 0, and p € C". So Conjecture 7.4 is implied by

Conjecture 7.7. Ifu € LP(H") is a positive C*® solution to (7.5), then u is of
the form (71.6).

So far, we have only been able to prove the following weak version of
Conjecture 7.7:

Theorem 7.8. If u € LP(H") is a positive C*® solution to (7.5) which is
radial in the z variable, then u is of the form (7.6) (with p = 0). (The other
solutions are obtained by left translations on the Heisenberg group.)

Proof. Introduce the function w = ¢+ i|z|*> on H”", and write y = |z|?,
x = t. The hypothesis on u means that u(z,¢) = v(w),. where v is a smooth
function of the complex variable w = x + iy.

We first examine the behavior of v near infinity. Consider the CR inversion
F:(H" — {0}) = (H" — {0}) given by (z,1)=5(z,1) = (z/w,—t/|W|*). £
satisfes # *8, = |w| 26,. Note that £ *u(z, t) = v(-1/w). Since

§=5%(ur=8,) = wulz/w, /1) 26,
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also has constant scalar curvature n(n + 1)/2, we have that #(z,¢) =
Iwi™"u(z/w, —t/|w|?) also satisfies (7.5) on H" — {0}. By Proposition 5.17,
(7.5) holds on H", so by Corollary 5.16, # is positive and C* near the origin,
and so is #(w) = |w| "v(-1/w). In particular, this means that, as [w| — oo,
CYwl " < |o(w)] < Cjw|™" for some constant C. Differentiating & with
respect to w or w, we find that

log(w) |, [v,(w)]< Clw[" ",
[0 (W), [0um(W)] < Clw|™" 72

Now consider the function ¢(w) = (v(w))™%'" = (u(z, t))~¥". Observe that
Z,u = 2iz/9v/3w, and so

Aju= —%Z (Zj2j+ Zij) = -4y, —n

y
J

2

qwa Ei
o T 2H)

= ¢ "D Uonye, . —n(n+2)y

and thus (7.5) becomes

A rather long computation using this last equation shows that, with ¢ =
¢ —=y/2,
2

( o _ buto )2
ww ¢ M

When integrated over the upper half-plane {(x, y):y > 0}, we claim the
left-hand side vanishes. It suffices to show that

Reaw(y"qb"("*”(%qsw + xpw(% - 9‘%)

(7.9) .

= y"qb‘("“’(%w%w +

¢
goes to zero sufficiently rapidly as [w| — oo. But our estimates on the decay of
v and its derivatives imply
Clw? <19l < CIwl, 18l 1l < Wl [yl sl < C
Thus [4(w)]| < Clw|~"*Y, and so
f 0,Adxdy = lim 0,4 dx dy
y>0

R-o y>0
W< R

and since |, —r., >0 4| < CR™", the last term goes to zero as R — 0.
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Since the integrand on the right-hand side of (7.9) is the positive function
7o~ "+ D multiplied by a sum of squares, we conclude that

_ ¢W¢W =
¢

The second equality implies that log¢ is harmonic, so ¢ = [f]* for some
function f which is holomorphic in w. But then ¢, = 0 implies f is a linear
polynomial in w, so ¢ is of the form ¢(w)= C|w + A|? for C€R, A € C.
This implies immediately that # is of the form (7.6) (with p = 0).

0.

i

q'!)ww ¢WW

Appendix

In this appendix we will prove Proposition 5.10.

Lemma A.1.  Ler U, be an open set such that U, C C U. With the hypotheses
of Proposition 510, u € SF(Uy).

Proof. For f € CF(U), define

PI(E) = [ 1(n)F(O(n,£)) 8(n) A db(n)"/n12",

where F is defined in Proposition 5.1 and © in Theorem 4.3. The arguments of
[9, Proposition 16.5], show that P is a parametrix for A, in the sense that for
he CPWU), P(Ayh)= h + Rh in U, where R is smoothing of order 1 and P
is smoothing of order 2 in the sense of the Folland-Stein spaces S£(U). In

particular, if W),---, W, is a pseudohermitian frame for Uand 1 < g < r < o0,
1/r=1/9 — 1/(2n + 2), then

(A.2) W,P isbounded: LY(U) » L' (U), j=1,---,n;

(A.3) W,R is bounded: LY(U) — LY(U), j=1,---,n.

Let ¢ € C{°(U) be a real-valued function such that ¢ = 1 in a neighbor-
hood of U,. Then we have in the distribution sense

Ay(yu) = (A )u — fbu — 2L3(dy, du).

Therefore, applying a routine limiting argument and the properties of P, we
have

vu+ R(yu) = P((A)u = fhu = 2L5(dy, du))
in the distribution sense on U,. Consequently, on U],

W(yu) = -WR(Yu) + W,P((80)u — fbu — 2L5(dy, du)).
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Because ¢ is constant in a neighborhood of U, dy and A,y vanish there. The
kernel representing the operator P is C* away from the diagonal n = £ in U,
and thus
W,P((A¥)u - 2L5(dy, du)) € C=(T)).

By (A.3), W,R(yu) e L*(U) C L*(U) (with p =2 + 2/n as usual). Finally,
fe L"*NU), u € L?(U), and Holder’s inequality imply fyu € L?(U), where
1/p"=1/p + 1/(n + 1). Consequently, using (A.2) with g = p’, W.P(fYu)
€ L*(U). This yields W,(yu) € LX(U), or Wu € L*(U,), so Lemma A.1 is
proved.

It follows from Lemma A.1 that we can use functions in SZ(U;) as test
functions: Let ¢, € C5°(U;) tend to ¢ € S{(U,) in the ST norm. Then

/U uAb(i)j:/Ul Li(du, dg,) —>/Ul Li(du, do).

Also, ¢; = ¢ in L?(U,), so by Holder’s inequality
uop, — UuP.
[, fues= [ fuo

Since [, (ul o, + fud;) = 0 we conclude that

(A.4) [ L3(du, ds) + fup = 0 for every ¢ € S2(U).

(This and all subsequent integrations are with respect to 8§ A d@".)
Now choose 8 > 1 and N > 0. Define

1B for0 <t < N, _ frBn2 for0 <t < N,
G(1) = {N/"lt fort > N, F(r) = {NU*“W% fort > N.

Notice that for all ¢ > O except t = N,

(A.5) F/ (1) < BG'(1),  F(1)' =1G(1),

(A.6) G(t) < F(t)F'(1).

Let ¢y € C(U;), ¢ = 0. Because ¢ has compact support and G(r) is a

Lipschitz function uniformly in z, the function ¢ = ¢2G(u) belongs to SH(U;).
Hence by (A.4)

(A7) [ 936" (u)lduf} + 29 L5 (du, d¥)G(u) + fuyp>G(u) = 0.

From (A.6) we have

[ 13t )60 .

< (f \ledulﬁF’(u)z)l/z(f ldwléF(uf)

< g5 [ VIEF () + B [ v’
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Combining this inequality with (A.5) and (A.7) we find that

55 ] V1dE (@) < 28 [ 10413F ()" + [1£92F(u)"

Denote w = y F(u). Then dw = F(u)dy + {F’(u) du. The Sobolev inequal-
ity (Proposition 5.5) implies there is a constant C such that

2/p
(/w") <C/|dw|§+C/w2

< G f 1dvizF(u) + Gf 11w+ [ w

If E denotes the set where ¢ # 0, then

2/p

fuwe < (L]

For E sufficiently small that ( [¢|f}"*")"/""*V < 1G,, we conclude that

2/p N
(/ wp) < 2CB/ [dy|2F(u)? + 2C/ w.

Taking the limit as N — co, we have

2
(/ wuwHW) "< G [ (1wl + ) ur,

Now by choosing a suitable collection of cutoff functions { we can show that
if u e LE*Y(U,) for some U, C C U, then u € L¥#+YP/2(1);) for all U, C C
U,. Thus, since p/2 > 1, we conclude by induction that u € L*(U,) for any
U, c c U; and any s < co0.

(1
(2]
{31
(4]
[5]
(61
7

References

T. Aubin, Equations différentielles non linéaires et probléme de Yamabe concernant la courbure

scalaire, J. Math. Pures Appl. 55 (1976) 269-296.

M. Beals, C. Fefferman & R. Grossman, Strictly pseudoconvex domains in C", Bull. Amer.

H.

D.

Math. Soc. (N.S.) 8(1983) 125-322.

Brezis & T. Kato, Remarks on the Schroedinger operaror with singular complex potentials,
J. Math. Pures Appl. 58 (1979) 137-151. '

Burns, K. Diederich & S. Shnider, Distinguished curves in pseudoconvex boundaries, Duke
Math. J. 44 (1977) 407-431.

. S. Chern & R. Hamilton, On Riemannian metrics adapted to three-dimensional contact

manifolds, preprint.

. R. Coifman & G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer.

Math. Soc. 83 (1977) 569-645.

. Farris, A#n intrinsic construction of Fefferman’s CR metric, Pacific J. Math. 123 (1986)

33-45.



(8]
[9]
(10]
(11]
(12]

(13]
{14

{15}
f16]
{17
(18]
{19]
{20
{21]
(22]

(23]
[24]

[25]
(26]

[27]

THE YAMABE PROBLEM ON CR MANIFOLDS 197

C. Fefferman, Monge-Ampere equations, the Bergman kernel, and geometry of pseudoconvex
domains, Ann. of Math, 103 (1976) 395-416; Correction, 104 (1976) 393-394.

G. B. Folland & E. M. Stein, Estimates for the 3,-complex and analysis on the Heisenberg
group, Comm. Pure Appl. Math. 27 (1974) 429-522

S. Helgason, Sofvability questians for invariant differential operators, Fifth Internat. Colloq.
on Group-Theoretical Methods in Physics, Montreal, 1976.

D. Jerison, The Dirichlet problem for the Kohn Laplacian on the Heisenberg group. 1, J.
Functional Analysis 43 (1981) 97-142.

, The Poincaré inequality for vector fields satisfying Hormander’s condition, in prepara-

tion.

, Remarks on non-isotropic Sobolev spaces, in preparation.

D. Jerison & J. M. Lee, A subelliptic, nonlinear eigenvalue problem and scalar curvature on
CR manifolds, Contemporary Math. 27 (1984) 57-63.

3. 3. Kohn, Boundaries of complex manifolds, Proc. Conf. on Complex Analysis (Minneapolis,
1964), Springer, Berlin, 1965, 81-94.

J. M. Lee, The Fefferman metric and pseudohermitian invariants, Trans. Amer. Math. Soc. 296
(1986) 411-429.

P.-L. Lions, Applications de la méthode de concentration-compacite a I’ existence de fonctions
extremales, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983) 645-648.

J. Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math.
14 (1961) 577-591.

A. Nagel & E. M. Stein, Lectures on pseudo-differential operators, Princeton University Press,
Princeton, NJ, 1979.

M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differen-
tial Geometry 6 (1971) 247-258.

R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J.
Differential Geometry 20 (1984) 479-495.

E. M. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer.
Math. Soc. 79 (1973) 440-445.

G. Talenti, Best constant in Sobolev inequaliry, Ann. Mat. Pura Appl. 110 (1976) 353-372.

N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on
compact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1968) 265-274.

K. Uhlenbeck, Elliptic theory and calculus of variations on manifolds, Lectures given at
Harvard University, 1983.

S. M. Webster, Pseudohermitian structures on a real hypersurface, J. Differential Geometry 13
(1978) 25-41.

H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J.
12 (1960) 21-37.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
HARVARD UNIVERSITY





